Single Pure - Factor Theorem Cubic Solving

- 1. The equation $f(x) = x^3 4x^2 + x + 6 = 0$ has three integer roots.
 - (a) List the values of a for which it is sensible to check whether f(a) = 0 and check each of them.
 - (b) Solve f(x) = 0.

2. By considering f(various sensible values), fully factorise the following:

(a) $2x^3 + 5x^2 - x - 6$.	(2x+3)(x-1)(x+2)
(b) $3x^3 - 2x^2 - 7x - 2$.	(3x+1)(x+1)(x-2)
(c) $2x^4 - 9x^3 + x^2 + 12x$.	x(x-4)(2x-3)(x+1)
(d) $6x^4 - 7x^3 - 12x^2 + 3x + 2$.	(x-2)(x+1)(2x-1)(3x+1)
3. Solve the following equations:	
(a) $x^3 + 3x^2 = 10x$.	x = 0 or $x = 2$ or $x = -5$
(b) $x^3 + 12 = 2x^2 + 11x$.	x = 1 or x = -3 or x = 4
(c) $x^3 + 31x = 10x^2 + 30$.	x = 5 or x = 2 or x = 3
(d) $2 = 2x^3 + 5x^2 + x$.	$x = \frac{1}{2}$ or $x = -1$ or $x = -2$
(e) $3x^3 + 11x^2 + 8x = 4$.	$x = \frac{1}{3}$ or $x = -2$ (repeated)
(f) $x^3 + x^2 = 10 + x$.	x = 2 (only)
(g) $x^3 + 2x^2 - 3 = 2x$.	$x = -1 \text{ or } x = \frac{-1 \pm \sqrt{13}}{2}$
(h) $2x^3 + x^2 + 1 = 3x$.	$x = \frac{1}{2}$ or $x = \frac{-1 \pm \sqrt{5}}{2}$
(i) $x^4 + 17x^2 + 2x = 8x^3 + 24$.	x = -1 or x = 2 or x = 3 or x = 4
(j) $y^4 + 3y^3 = 13y^2 + 51y + 36$.	y = -1 or $y = -3$ (repeated) or $y = 4$
(k) $x^4 + x^3 + x + 3 = 6x^2$.	$x = -3 \text{ or } x = 1 \text{ or } x = \frac{1 \pm \sqrt{5}}{2}$
(1) $7x^3 + 22x = 2x^4 + 15x^2 + 8$.	$x = 2 \text{ or } x = \frac{1}{2}$
4. Given that $(x - 4)$ is a factor of $2x^3 - 5x^2 - 14x + a$, find <i>a</i> .	<i>a</i> = 8
5. Given that $(x + 3)$ is a factor of $3x^3 + 9x^2 + bx + 6$, find <i>b</i> .	<i>b</i> = 2
6. Given that $(2x - 1)$ is a factor of $2x^3 + cx^2 + 8x - 2$, find <i>c</i> .	c = -9
7. Given that $(2x - 1)$ is a factor of $4x^4 + ax^3 + x^2 + 9x - 3$, find <i>a</i> .	<i>a</i> = -16
8. Given that $(x + 3)$ and $(x - 2)$ are factors of $2x^3 + dx^2 + ex - 6$, find d	<i>d</i> and <i>e</i> . $d = 3, e = -11$
9. Given that $(x - 2)$ and $(x + 3)$ are factors of $2x^3 + x^2 + ax + b$, find a s	and <i>b</i> . $a = -13, b = 6$
10. Given that $(x + 1)$ and $(x - 5)$ are factors of $x^3 + ax^2 + bx - 20$, find a	<i>a</i> and <i>b</i> . $a = 0, b = -21$
11. Given that $(x - 6)$ and $(x + 2)$ are factors of $x^3 + ax^2 + bx - 24$, find a	<i>a</i> and <i>b</i> . $a = -2, b = -20$
12. Given that $(x - 1)$ and $(x - 2)$ are factors of $x^4 + ax^3 + bx^2 - 27x + 10$, find <i>a</i> and <i>b</i> . $a = -9, b = 25$	
13. Given that $(x + 1)$ and $(x - 4)$ are factors of $x^4 + ax^3 - 13x^2 + bx - 36$, find <i>a</i> and <i>b</i> . $a = 3, b = -51$	

14. Given that (x + 1), (x - 2), and (x - 3) are factors of $x^4 + ax^3 + bx^2 + cx + 18$, find *a*, *b* and *c*.

15. Given that (x + 1), (x + 3), and (x - 4) are factors of $x^4 + ax^3 + bx^2 + cx - 60$, find *a*, *b* and *c*.